16,085 research outputs found

    Stirring apparatus for plural test tubes Patent

    Get PDF
    Design of mechanical device for stirring several test tubes simultaneousl

    Studies on the Localization and Mechanism of Alkaline Metal Activation of Protein Synthesis

    Get PDF
    Localization and mechanism of rat liver protein synthesis by alkali metals and ammonium ion

    Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex

    Get PDF
    Many ecological insights into the function of rivers and watersheds emerge from quantifying the flux of solutes or suspended materials in rivers. Numerous methods for flux estimation have been described, and each has its strengths and weaknesses. Currently, the largest practical challenges in flux estimation are to select among these methods and to implement or apply whichever method is chosen. To ease this process of method selection and application, we have written an R software package called loadflex that implements several of the most popular methods for flux estimation, including regressions, interpolations, and the special case of interpolation known as the period-weighted approach. Our package also implements a lesser-known and empirically promising approach called the “composite method,” to which we have added an algorithm for estimating prediction uncertainty. Here we describe the structure and key features of loadflex, with a special emphasis on the rationale and details of our composite method implementation. We then demonstrate the use of loadflex by fitting four different models to nitrate data from the Lamprey River in southeastern New Hampshire, where two large floods in 2006–2007 are hypothesized to have driven a long-term shift in nitrate concentrations and fluxes from the watershed. The models each give believable estimates, and yet they yield different answers for whether and how the floods altered nitrate loads. In general, the best modeling approach for each new dataset will depend on the specific site and solute of interest, and researchers need to make an informed choice among the many possible models. Our package addresses this need by making it simple to apply and compare multiple load estimation models, ultimately allowing researchers to estimate riverine concentrations and fluxes with greater ease and accuracy

    Brane classical and quantum cosmology from an effective action

    Full text link
    Motivated by the Randall-Sundrum brane-world scenario, we discuss the classical and quantum dynamics of a (d+1)-dimensional boundary wall between a pair of (d+2)-dimensional topological Schwarzschild-AdS black holes. We assume there are quite general -- but not completely arbitrary -- matter fields living on the boundary ``brane universe'' and its geometry is that of an Friedmann-Lemaitre-Robertson-Walker (FLRW) model. The effective action governing the model in the mini-superspace approximation is derived. We find that the presence of black hole horizons in the bulk gives rise to a complex action for certain classically allowed brane configurations, but that the imaginary contribution plays no role in the equations of motion. Classical and instanton brane trajectories are examined in general and for special cases, and we find a subset of configuration space that is not allowed at the classical or semi-classical level; these correspond to spacelike branes carrying tachyonic matter. The Hamiltonization and Dirac quantization of the model is then performed for the general case; the latter involves the manipulation of the Hamiltonian constraint before it is transformed into an operator that annihilates physical state vectors. The ensuing covariant Wheeler-DeWitt equation is examined at the semi-classical level, and we consider the possible localization of the brane universe's wavefunction away from the cosmological singularity. This is easier to achieve for branes with low density and/or spherical spatial sections.Comment: Shortened to match version accepted by Phys. Rev. D (unabridged text found in version 2), 42 pages, 9 figures, Rextex

    Weyl Semimetal in a Topological Insulator Multilayer

    Full text link
    We propose a simple realization of the three-dimensional (3D) Weyl semimetal phase, utilizing a multilayer structure, composed of identical thin films of a magnetically-doped 3D topological insulator (TI), separated by ordinary-insulator spacer layers. We show that the phase diagram of this system contains a Weyl semimetal phase of the simplest possible kind, with only two Dirac nodes of opposite chirality, separated in momentum space, in its bandstructure. This particular type of Weyl semimetal has a finite anomalous Hall conductivity, chiral edge states, and occurs as an intermediate phase between an ordinary insulator and a 3D quantum anomalous Hall insulator with a quantized Hall conductivity, equal to e2/he^2/h per TI layer. We find that the Weyl semimetal has a nonzero DC conductivity at zero temperature and is thus an unusual metallic phase, characterized by a finite anomalous Hall conductivity and topologically-protected edge states.Comment: 4 pages, 3 figures, published versio

    Position Measurements Obeying Momentum Conservation

    Full text link
    We present a hitherto unknown fundamental limitation to a basic measurement: that of the position of a quantum object when the total momentum of the object and apparatus is conserved. This result extends the famous Wigner-Araki-Yanase (WAY) theorem, and shows that accurate position measurements are only practically feasible if there is a large momentum uncertainty in the apparatus
    corecore